Solving Exponential Equations (Part 1)

These notes are intended as a summary of section 5.3 (p. $358-363$) in your workbook. You should also read the section for more complete explanations and additional examples.

Laws of Exponents

1. $x^{m} \cdot x^{n}=x^{m+n}$
2. $(x \cdot y)^{m}=x^{m} \cdot y^{m}$
3. $\frac{x^{m}}{x^{n}}=x^{m-n}$
4. $\left(\frac{x}{y}\right)^{m}=\frac{x^{m}}{y^{m}}$
5. $\left(x^{m}\right)^{n}=x^{m \cdot n}$
6. $\sqrt[m]{x}=x^{\frac{1}{m}}$
7. $x^{-m}=\frac{1}{x^{m}}$

Exponential Equations

An exponential equation is an equation that contains a power with a variable in the exponent. For example:

$$
3^{x}=81
$$

Equations of this type can be solved by writing both sides as powers with the same base, as shown below:

$$
3^{x}=3^{4}
$$

Logically, if the powers are equal, and their bases are equal, then their exponents must also be equal. Thus,

$$
x=4
$$

Example 1 (sidebar p. 359)
Solve each equation.
a) $4^{x}=\frac{1}{256}$
b) $27^{x}=9^{2 x-1}$

Example (not in workbook)
Solve each equation.
a) $2^{x}=8$
b) $3^{x}=\frac{1}{27}$
c) $2^{-x}=\frac{1}{32}$
d) $5^{x^{2}-2 x}=125$
e) $81^{x+2}=27^{2}$
f) $2 \cdot 4^{x-3}=32$

Example 2 (sidebar p. 360)
Solve each equation.
a) $2^{x}=8 \sqrt[3]{2}$
b) $(\sqrt{125})^{2 x+1}=\sqrt[3]{625}$

Homework: \#3-6, 9, 10 in the exercises (p. 364 - 368). Answers on p. 369.

